
N93-25956

Machine Learning Techniques for Fault Isolation
and Sensor Placement

James R. Carnes

Advanced Computing Laboratory

Boeing Defense and Space Group

Huntsville, AL 35824

ray@hsvaic.boeing.com

Douglas H. Fisher

Department of Computer Science

Vanderbilt University

Nashville, TN 37235

dfisher @ruse. vanderbil t. edu

November 16, 1992

Abstract

Fault isolation and sensor placement are vi-

tal for monitoring and diagnosis. A sensor

conveys information about a system's stale

that guides troubleshooting _f problems arise.

We are using machine learning methods to

uncover behavioral patterns over snapshots

of system simulations that will aid fault iso-

lation and sensor placement, with an eye to-

wards minimality, fault coverage, and noise
tolerance.

1 Introduction

Accurate and timely fault diagnosis is crit-

ical in the life cycle of many physical sys-

tems. Seemingly minor faults can, if un-

remedied, lead to catastrophic faults that

disable a system permanently. To iden-

tify faults, (human or machine) diagnosti-

cians observe the system's behavior primar-

ily through sensor readings. Sensors should

generally be selected to be maximally infor-

mative about the state of the system. In the

best of all possible worlds, we might expect

that sensors should be placed on all measur-

able quantities of a system; anomalous val-

ues on one or more sensors could then read-

ily identify the presence of and help isolate

system faults. However, costs are associated

with sensors. These costs correspond to ac-

tual monetary cost as well as costs due to

the physical design constraints of the sys-

tem such as power, mass, and volume which

are at a high premium in systems such as

Space Station Freedom. In addition, in-

creased numbers of sensors introduce more

information that an operator must attend

to; too many sensors can lead to informa-

tion overload, thus actually contributing to

a degradation in (human) diagnostic perfor-

mance.

In many cases it is neither feasible nor de-

sirable to measure all quantities of a system.

Thus, the diagnostician must interact with

the system in two other ways: probing and

testing. One can think of probing as sens-

ing a quantity dynamically to determine its

value at a particular point in time. In test-

ing we examine component output quanti-

ties while systematically varying its inputs.

47

PREP_,'EOtNG PPIGE BLANK NOT FILMED

Probing and testing increase the cost (e.g.,

time) of diagnosis and may even be impos-

sible on remote systems such as unmanned

spacecraft. Moreover, probing and testing

are only initiated when there is some indi-

cation of a fault. Thus, we would like to ju-

diciously place sensors so that they indicate

the existence of faults and focus attention

on their plausible causes.

Sensor placement is the task of determin-

ing a set of sensors which allows the most ac-
curate determination of the overall state of a

monitored system while minimizing costs re-

lating to the number of sensors, power con-

sumption, cost, and weight. Reducing these

quantities is particularly important in space

platforms due to power and space restric-

tions. In response, we are using two ma-

chine learning methods to identify categories

of system behavior that are similar in terms

of measurable quantities. In this paper we

describe the specific methods used a_nd ana-

i!yze their results. As we will illustrate, these

results can be_explOited for purposes of diag-

nosis and design for diagnosabillty, notably

sensor placement.

We describe a methodology for applying

inductive learning systems to the discovery

of 'rule bases' for diagnosis. Our primary

reason for doing so is to facilitate system de-

sign. In particular, rules suggest measurable

quantities that are most diagnostic. Given a

suitable tradeoff between coverage, accuracy

and sensor cost, we envision a tool that aids

System designers in sensor selection. We are

currently in the process of systematically ex-

ploring the interaction between these factors

in the context of two learning systems, Quin-

lan's C4.5 [13] and Fisher's COBWEB [6],

with a longer-term goal of developing objec-

tivc function(s) that reflect such a tradeoff,

2 Supervised Learning

Approach

Supervised learning systems discover rules

that characterize preclassified observations.

For example, supervised machine learning

systems are used in medical diagnosis; given

patient case histories that record features

such as gender, age, aspects of medical his-
tory, and a variety of test results, as well

as a diagnosis provided by a physician, a

supervised system discovers rules that are

consistent with the physician-supplied diag-

noses. We can also use this technology for

purposes of fault diagnosis. In particular,

consider the model of a thermal subsystem

given in Figure 1.

We have used the following strategy to

learn rules that distinguish a variety of con-
ditions that can cause anomalous behavior

in this system.

[1] specify a simulator that represents each

=_ major system componen t as a func-
tion that maps component inputs to

outputs. Simulation using a model-

based" methodology Simiiar to Kuipers'

[10] begins with an initial state of sys-

tem parameter settings and propagates

parameter changes through component

functions until the simulator converges

on a steady state.

[2] Associated with each system component

are permissible parameter (continuous

and discrete) ranges, within which the

component is assumed to operate sat-

isfactorily, hfitial simulator parame-

ters are systematically perturbed be-

yond extreme ends of these ranges for

each component, thus yielding condi-

tions under which the system is liable

to malfunction.

48

tank

heater
to drain

heat exchanger

electric fans

Figure 1: A thermal model.

[3] Each condition set generated in step [2]

is propagated through the system un-

til a steady state (or some error con-

dition) is reached. A database record

(which consists of measurements from

each observable parameter in the sys-

tem, labeled by the initial perturbed

condition) is generated.

[4] The system state descriptions of all

simulations are collected together and

passed to a supervised learning system.

[5] The learning system forms a decision

tree, then extracts rules that distin-

guish anomalous behaviors that were

caused by different parameter pertur-

bations.

We have used a supervised learning sys-

tem known as C4.5 to form a diagnostic

rule base. C4.5 has separate programs that

(1) construct a decision tree and (2) form

a rule base. In particular, C4.5 was used

to discriminate the system perturbations

('faults') generated in step [2] of the sim-

ulation/learning procedure outlined above.

Our thermal model contained a total of 87

fault types. In addition, three versions of

each perturbation type were generated, cor-

responding to cases where the selected pa-

rameter value was perturbed just above (or

below) acceptable ranges, moderately out of

range, and far out of range. Intuitively,

these corresponded to conditions of high

(low), very high (low), and extremely high

(low) values, but each case was la.beled by a

single fault (e.g., the parameter was 'above

acceptable range'). Thus, the decision tree

49

had to distinguish 87 'faults', derived from

over 261 observation sets (snapshots). Each

snapshot was represented by 23 system pa-

rameter values. Using C4.5, we constructed

decision trees much like the one partially

shown in Figure 2.

VALVE I-POS-LOW VALVE I-POS-LOW

Figure 2: A partial

anomalous behaviors.

decision tree over

Initially, we are interested in two items:

(1) the diagnostic accuracy of this tree, if we

insist that faults must be perfectly isolated,

and (2) how much the tree 'compresses' the

parameters needed to attain a desired accu-

racy. We call this second factor the param-

eter compression ratio.

In this example, the decision tree cor-

rectly and uniquely classified 73% of the

snapshots over which it was constructed.

Note that the failure to perfectly classify
all known behaviors is the result of C4.5's

in formation-theoretic measure which could

not reliably distinguish certain behaviors

with the existing observable parameter val-

ues. These points of ambiguity are precisely

where system designers should focus sensor

placement efforts in order to better distin-

guish faults. It required that approximately

18 of the 23 parameters be consulted in or-

der to achieve this accuracy - a parameter

compression ratio of (23- 18)/23 or 0.22.

The statistics above reflect a bias that

the decision tree (or any rule-based system

for that matter) should not attempt to per-

fectly isolate a fault. However, we can re-

lax the diagnostic task, and allow catego-

rization to identify an observation's fault

as one of a small number of possibilities.

The tree above will correctly identify each

observation as exhibiting 1 of at most 3

fault possibilities (pump-speed-low, valvel-

pos-low, valvel-pos-high) in 100% of the

cases. Thus, we are are interested in the

degree to which the tree isolates a fault. In

this ease, our minimal fault compression ra-

tio is (87- 3)/87 or 0.97.

Three aspects of this inductive analysis

are of interest. Each of these speaks to

the success of the diagnostic task, and pro-

vides guidelines for fault isolation and sensor

placement. Our particular concern in this

latter regard is with sensor placement.

• The fault compression ratio tells us the

degree to which a behavior's fault can

be isolated using the rule base. In-

versely, it is a measure of the extent

that we will have to rely on other

sources of knowledge and diagnostic

procedures, such as an expert or system

simulation in conjunction with model-

based diagnosis, to discriminate the

fault from the reduced set of possibil-

ities.

• The parameter compression ratio indi-

cates the proportion of system param-

eters that need to be accessed for di-

agnosis over a population of behaviors.

This is a guide to the number of sensors

that will be required if diagnosis relies

simply on sensor values.

• The diagnostic accuracy in a system is

the percentage of behaviors that are

50

correctly categorized as one of several

possibilities. It measures the reliabil-

ity of diagnosis within the rule base,

whereas fault compression measures the

granularity.

These factors are, of course, interdepen-

dent. For example, decreasing allowable

fanlt compression (undesirable) will tend to

increase the required parameter compres-

sion (desirable), and increase diagnostic ac-

curacy (desirable). In general, we cannot

hope to optimize each of these parameters.

Rather, design and sensor placement must

optimize some tradeoff between them. For

example, if accuracy is at a premium, then

we may have to accept an decrease in fault

compression. This implies a corresponding

(but desirable) increase in parameter com-

pression, and an expected decrease in sen-

sor 'cost' as well. However, the undesir-

able decrease in fault compression implies

that diagnostic cost will increase from hav-

ing to employ secondary diagnostic proce-

dures such as probing, testing, and simula-

tion to a larger extent.

We are initiating systematic experiments

across the range of diagnostic factors, with

tile eventual goal of defining an objective

function that characterizes an appropriate
tradeoff between them. Such a function

will allow us to bound certain factors (e.g.

accuracy, parameter compression or sensor

'cost') and to optimize for the remaining

factors (e.g., fault compression). Our cur-
rent version of C4.5 builds a decision tree

based on the diagnosticity of system param-
eter values. Other variations that, take into

account the cost of sensing certain values

have also been developed by Tan & Schlim-

mer [15].

A decision tree representation of a rule

base is conceptually simple, and it has the

desirable aspect of encoding the 'minimal'

number of system measurements needed to

isolate faults to a certain granularity. Itow-

ever, it also has some well-known disadvan-

tages. Notably, a decision tree is very sen-

sitive to noise in sensed system values (or

faulty sensors, which we regard as another

type of noise): a single misleading value can

lead diagnosis considerably astray. One im-

plication is that the minimality characteris-

tic of decision trees may not be wholly de-

sirable; uncertainty in a domain may insist

on some redundancy in the sensed values, in

order to better protect against the possibil-

ity of noise. Thus, in addition to our studies

with C4.5, we are also investigating a second

inductive approach known as clustering.

3 Cluster-Analytic Ap-

proach

A data analyst must often identify sim-

ilarities and differences between observa-

tions. For example, a biologist will cate-

gorize a newly discovered organism into a

known genera based on its similarities with

known species of the class and differences

with members of competing genera. An

economist may recognize a trend in the mar-

ket as having occurred previously, and fore-

cast a particular outcome based on these his-

torical similarities. The need to 'cluster' ob-

servations is critical in many fields, includ-

ing the biological and social sciences, where

it has spawned data analysis tools of numer-

ical taxonomy or cluster analysis (e.g., Jain

& Dubes [8]). Clustering methods have also

evolved in artificial intelligence (AI) and ma-

chine learning (e.g., Michalski & Stepp[l 1]).

Clustering systems automatically discover

categories of observations (events or objects)

that are similar along some dimension(s).

Once uncovered, these categories may sug-

51

gest features that characterizethe observed
data and/or facilitate predictionsabout the
nature of future data. As in scientific en-
deavors, engineeringdisciplines can profit
from clustering. For example, in diagnosis
an observation may be a set of symptoms
that collectively indicate a classof events
that sharea commondiagnosis.We believe
that discoveredclusterscanbeuseddynam-
ically for autonlated diagnosis,and that like
a data analyst, a system designercan use
clustersover simulated behavior to facilitate

design - in this case sensor placement.

3.1 COBWEB: A sample clus-

tering system

A clustering system constructs a classifica-

tion scheme over a set of observations. Fig-

ure 3 illustrates a classification tree con-

structed over five observations by a clus-

tering system called COBWEB. Each node

(class) in this tree represents a cluster of

observations. Each cluster is represented

by the distribution of attribute values over

members of that node; this illustrative ex-

ample assumes that observations are rep-

resented by attributes of Size (small,

medium, large), Shape (square, sphere,

pyramid), and Color (blue, green, red).

Each leaf of the tree represents a cate-

gory covering a single observation; the prob-

ability of each vaIue in a leaf, P(Ai =

V_j]leafk), is 1.0 (i.e., present in the cor-

responding observation) or 0.0 (i.e., absent,

in which case it is not explicitly stored at

tile node). The root of the tree covers all

observations, with base rate probabilities

P(Ai = _jlroot) that reflect global value

distributions. In general, each node, Ck,

contains probabilities, P(Ai = VoICk), for
each attribute value observed in a member

of the node. In addition, tile proportion of

observations stored under each node relative

to the node's parent is stored with the node.

For example, forty percent of the observa-

tions stored under the root are stored under

node C1: P(Ca[root) = 0.4.

We will not describe the strategy used to

build this categorization hierarchy over ob-

servations since it is of limited relevance in

future discussion, and any of several strate-

gies can be used. However, it is important

to note that every clustering system relies on

a measure of cluster quality. In COBWEB's

case this is a measure of category utility de-

rived from Gluck & Corter [3]:

CU(Ck) = P(Ck)x

[Ei g3 P(Ai = V/jICk) log2 P(Ai = Vis[Ck)

-- P(ai = V/3)log_ P(ai = V/j)],

which rewards clusters that increase the cer-

tainty inherent in the attribute value dis-

tributions. The expression above is appro-

priate for nominMly-valued (i.e., discrete,

unordered, finite) attributes, but several

variations on this basic scheme (Gennari,

Langley, & Fisher [7]; Reich & Fenves[14])

have been adapted to handle observations

described over ordinal and continuously-

valued attributes as well. The certainty-

maximizing measure is used recursively, first

to build a partition over the entire popula-

tion of observations, and then to subparti-

tion each of these initially-constructed clus-

ters, thus yielding a categorization hierar-

chy. Our particular interest in this process

is its ability to discover clusters over snap-

shots or instantaneous descriptions of sys-
tem simulations.

3.2 Discovering Fault Modes

We use COBWEB to discover categories of

fault conditions over system simulations.

This proceeds in much the same way as

52

P(C 1lroo0=0.40

sma 1.00]

squ 1.00

blu 0.50 gre 0.50

Size sma 0.40 med 0.40 lar 0.20

Shape squ 0.40 sph 0.40 pyr 0.20 P(root)=1.0

Color blu 0.20 gre 0.20 red 0.60

rned0.67 lar0.33

sph 0.67 pyr 0.33
red !.00

P(C31CI)=0.50 P(C41C1)=0.50 PC51C2)=o.33 P(C7_2)=0.33 P(C61C2)=o.33

Figure 3: A classification tree constructed by COBWEB.

the simulation/induction procedure of Sec-

tion 2, except that in Step [4], the snapshots

are passed to our clustering system rather

than a supervised one. An example of a

categorization tree of discovered fault modes

for the thermal system is partially shown in

Figure 4. Each datum consists of inputs

and outputs, for all components, including

the single perturbed value (as described in

step [2]); that is, each datum is a snapshot

of the system. We do not show the proba-

bility distributions over all attribute values

for clusters, but simply label each low-level

node by a descriptor that conveys the fault-

mode meaning. Thus, low flow through the

radiator and a malfunction to the heater it-

self both result in high water temperatures

(Example 1), despite the fact that this be-

havior emerges for very different reasons.

Similarly, high flow through the pump ap-

pears somewhat similar to a second heater
malfunction: both result in low water tern-

peratures (Example 2).

As with C4.5, the benefits of clustering

are at least two-fold. First, it is difficult

for engineers to completely design against

system faults in advance. Collectively, sim-

ulation and clustering identify fault models

that benefit design decision making. For ex-

ample, a faulty heater may overheat water in

the thermal system, but this behavior may

appear to be similar to, and thus be (:lus-

tered with, a radiator (heat exchanger) that

does not sufficiently cool water. Second, as

with C4.5, these ambiguities can alert ana-

lysts to place sensors that better distinguish

these conditions.

Again like C4.5, a COBWEB classifica-

tion tree can also facilitate fault diagnosis.

In particular, categories discovered through

clustering associate observable/sensor/test

features with component faults that lead to

the observed anomalies. We wish to clas-

sify an observable set of sensor readings to a

53

level of the classification tree where a rea-
sonably certain prediction of the underly-
ing fault can be made. However, a cat-
egorization and diagnosisprocedureis less
clear with a COBWEB generated tree, since

it does not specify a single value that should

be sensed at any particular point as a deci-

sion tree does. Rather, we can exploit char-

acteristic attribute values of discovered cat-

egories to direct sensor testing. There are

a number of ways for identifying character-

istic (or normative) values, as described in

Fisher[6] and Reich & Fenves[14], but suffice

it to say that they are values that are typ-

ically true of category members, and typ-

ically discriminate the category's members

fi'om other, contrasting categories. Charac-

teristic values suggest tests that are likely

to discriminate tile most promising paths of

tile tree during classification: verification of

a characteristic value(s) suggests that the

associated path be followed, thus narrow-

ing the plausible faults that are consistent

with the known observables; failure to ob-

serve the expected value reduces the likeli-

hood that the associated path will lead to a

correct diagnosis.

The primary advantage of this strategy

over C4.5 is that the categorization tree

formed through clustering specifies a num-
ber of values at each node of the tree that

can be sensed in order to guide further cate-

gorization or diagnosis. The decision tree

structure is not generally as robust when

certain values cannot be reliably sensed be-

cause of noise. In contrast, the increased in-

formation redundancy of the COBWEB tree

is more robust in the face of noise, but re-

dundancy also comes with the correspond-

ing disadvantage that parameter compres-

sion is correspondingly lower.

4 Attention Focusing

Consider the space between the decision tree

approach and the conceptual clustering ap-

proach as a continuum on feature structure.

In decision trees the structure is fixed during

training so that the order for feature testing

during prediction is rigid. There is one fea-

ture test at each node with leads to a node

at a deeper level (and another test).

In conceptual clustering there is no fea-

ture structure. To determine how to branch

into the concept hierarchy, one must test ev-

ery feature in the current node. In some

cases this could lead to a significant number

of tests (e.g., in our domain example from

Section 2).

Optimally, we would like to classify an

object or event in as few tests as possi-

ble with as few branches as possible. The

decision tree approach would seem to have

a tremendous advantage in classification of

problems with highly independent feature

spaces, ttowever, when in a feature space

with specific dependencies, it would be nice

to cluster tests over these dependencies and

branch deeper into the tree with fewer tests.

One way in which we accomplish this is to
examine the salience of each feature within

each node, calculating what amounts to a

category utility for each feature within the

scope of its parent node.

The order of inspection for features in
each node is then relative to its salience.

The salience for a feature can be computed

in any number of ways. In the equation be-

low we show a general method for calculat-

ing salience based on standard deviation.

1

salicncei =
K

where K is the number of classes, P(Ck)

is the probability of a particular class, and

54

HEATER

Figure 4: A partial classificationtree of fault modesfor the thermal model.

ai3 is the standard deviation of the feature
within class k.

Using the notion of salience, an algorithm

can be derived that focuses attention on

the most informative features to test before

branching into a behavior hierarchy. The

following describes our algorithm for atten-

tion:

o Select an unseen feature with probabil-

ity based on salience scores stored at

the parent.

. Compute the salience of the selected

feature; store this new score at tile par-

ent.

° Compare the category utility score for

the best. classification, x, based only on

features inspected so far.

4. Consider all remaining unseen features;

if these were to match the second best

classification, would the score be better

than z?

5. If yes, goto step [l], otherwise ignore

remaining attributes and branch to new

node.

A problem closely associated with the cal-

culation of feature salience is the selection

of parametric measurements to ensure com-

plete and cost-effective diagnosis. In ana-

lyzing a design for fault isolation we exam-

ine several additional factors, or properties,

that belong to the device used for sensing a

particular feature. A partial list of factors

governing sensor selection follows:

So, when looking at which salient features

to actually measure, an objective equation

to minimize cost and maximize feature cov-

erage must be designed. Below we offer a

55

responsetime
launch weight
criticality
reliability
repeatability
accuracy
resolution

maintainability
I/O performance
power consumption
procurementprice
number of sensors
operating temperature
operating pressure

Table 1: Factors for sensorselection.

generalform for suchan objectiveequation:

min E wif(

where F, iwi = 1, fi C {fl,'",fi,'",f_}

are n sensor factors, and f" =l[f_ [I is a nor-

malized value representing the sensor factor

within some range.

The following algorithm can be used for

selecting which salient features to measure

in a system under design.

1. Set threshold for objective equation.

2. Apply objective equation.

3. Collect sensor recommendations.

. If parameter compression and fault

compression (from decision tree analy-

sis) are exceeded, then adjust threshold;

goto root-node and restart. Otherwise

branch and goto step [2].

5 Related Work

Work currently underway at JPL comple-

ments our research. JPL's AI Group has

identified numerous factors that influence

optimal sensor placement in Chien, Doyle,

& de Mello[1], Chien, Doyle, & Rouqette[2],

and Doyle & Fayyad[5]. Among these are

factors that relate to the diagnosticity of

sensors - i.e., the ability of sensed system

quantities to predict the presence and lo-

cation of faults. Roughly, diagnosticity is

measured by simulating a fault on a system

model, and then observing the changes to

various model quantities. Quantities that

differ most relative to their normal state

(and possibly their value during other, com-

peting fault conditions), are judged good

predictors of that particular fault. In gen-

eral, the approach makes pairwise compar-

isons between tile same quantities under

two different fault modes, and two different

quantities under identical fault conditions.

The approach appears to be generally help-

ful, but the utility of pairwise comparisons

is limited. In contrast, our two learning ap-

proaches seek patterns or rules across mul-

tiple dimensions (i.e., multiple fault modes,

and multiple sensed quantities) of system

behavioral snapshots simultaneously. This

approach can provide a more global perspec-

tive on system behavior, and makes certain

multidimensional patterns explicit to the de-

signer.

Furthermore, our approach to sensor

placement is guided by an explicit model

of tile diagnostic process. This top-down

approach contrasts with JPL's bottom-up

approach, which is primarily responsible

for enumerating a wider variety of fac-

tors that play a role in sensor placement.

Our primary focus on a single aspect (i.e.,

information-content) of system parameter

values that might act as good sensors is

a disadvantage of our approach relative to

JPL's. However, we view the two ap-

proaches as complementary, and are pursu-

ing links between them.

56

6 Concluding Remarks

Our approach to sensor selection is distin-

guished from others in that it, is guided by

an explicit model of diagnosis; this top-down

methodology promises principled criteria for

sensor placement. Although our models of

diagnosis are primarily useful for design, the

rule bases developed through clustering and

supervised methods could be used directly

for diagnosis as well - either autonomously

or t)y a human user. In this, we recognize the

importance of both rule-based and model-

based approaches as contrasted in Keller[9]

and Davis[4]. Our bias is that inductive ap-

proaches can never replace model-based ap-

proaches in any but the most trivial of ap-

plications. As Keller points out, 'compiled'

knowledge is most helpful in diagnosing rel-

atively routine faults. To attempt a rule-

based approach that covers idiosyncratic

faults as well (i.e., achieves very high fault

compression) invites 'overfitting' (i.e., unac-

ceptably low accuracy and/or unacceptably

low parameter compression). The overfit-

ring phenomenon is well-known in machine

learning, but inductive approaches to com-

pilation for diagnosis have not traditionally

addressed the issue, as shown in Pearce[12].

Rather, an ideal tradeoff between coverage,

cost, and accuracy must only assume that a

certain diagnostic burden is taken on by the

compiled rule base. Our primary goal is to

limit, but not eliminate, the space of faults

that need be explored by probing, testing,
and simulation.

References

[1] S. Chien, R. Doyle, and L. ttomem

de Mello. Model-based reasoning ap-

proach to sensor placement for moni-

torability. In Proceedings of the Space

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Operations, Applications, and Research

Symposium, Houston, TX, 1991.

S. Chien, R. Doyle, and N. Rouquette.

Sensor placement for diagnosability in

space-bourne systems: A model-based

reasoning approach. In Second Inter-

national Workshop on the Principles of

Diagnosis, Milano, Italy, October 1991.

J. Corter and M. Cluck. Explaining

basic categories: feature predictability

and information. Psychological Bul-

letin., 1992.

Randall Davis. Form and content in

model-based reasoning. In Proceedings

of the AAAI Workshop on Model-Based

Reasoning, Detroit, MI, August 1989.

Richard J. Doyle and Usama M.

Fayyad. Sensor selection techniques in

device monitoring. In Proceedings of

the 2nd Conference on A I Simulation

and Planning, Cocoa Beach, CA, April

1991.

Douglas H. Fisher. Knowledge acqui-

sition via incremental conceptual clus-

tering. Machine Learning, 2:139-172,
1_)87.

John II. Gennari, Pat Langley, and

Douglas H. Fisher. Models of incremen-

tal concept formation. Artificial Intel-

ligence, 40, 1989.

A.K. Jain and R.C. Dubes. Algorithms

for Cluster Analysis. Prentice-Hall, En-

glewood Cliffs, N J, 1991.

Richard Keller. In defense of compi-

lation. In Proceedings of the Second

AAAI Workshop on Model-Based Rea-

soning, Boston, MA, August 1990.

57

[lO]

[11]

[12]

[13]

[14]

[15]

B. Kuipers. Qualitative simulation.

Artificial Intelligence, 29:289-338, De-

cember I986.

R.S. Michalski and R.E. Stepp. Learn-

ing from observation: Conceptual clus-

tering. In R.S. Michalski, J.G. Car-

bonell, and T.M. Mitchell, editors, Ma-

chine Learning: An Artificial Intelli-

gence Approach, pages 331-403, San

Mateo, CA, 1983. Morgan-Kaufinann.

D.A. Pearce. The induction of fault di-

agnosis systems from qualitative mod-

els. In Proceedings of the Seventh Na-

tional Conference on Artificial Intelli-

gence, pages 353-357, Saint Paul, MN,

1988. Morgan-Kaufmann.

J.R. Quinlan. Simplifying decision

trees. International Journal of Man-

Machine Studies, 27:221-234, 1987.

Y. Reich and S. Fenves. Tile forma-

tion and use of abstract concepts in de-

sign. In D. Fisher, M. Pazzani, and

P. Langley, editors, Concept Forma-

tion: Knowledge and Experience in Un-

supervised Learning, San Mateo, CA,

1991. Morgan-Kaufmann.

M. Tan and J. Schlimmer. Two case

studies in cost-sensitive concept acqui-

sition. In Proceedings of the Eigth Na-

tional Conference on Artificial Intel-

ligence , pages 854-860, Boston, MA,

July 1990.

58

